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Presentation of the Problem

Once upon a time, there was a town with n houses but no road. Unfortunately, it was
difficult to go anywhere in this town, especially in rainy weather because the cars had the
annoying tendency to get bogged down. After many complains from the inhabitants, the
mayor decided to built roads. Therefore, he asked experts to prepare a city plan based
on two simple principles:

• Any two houses must be reachable by the road

• It must cost as little as possible, knowing that the cost of the road is linear

What is the optimal construction ?
Is there an algorithm to find such optimal construction ?

Introduction

The goal of this problem is to find the shortest route such that all the houses are linked
together.

Two different approaches were developed : the Belgian team focused on the part of
the problem without intersection while the Romanian team allowed road intersections.
This article will first present the part without intersections then present the part with
intersections.

By intersection it is understood an added point (different from the houses) where 2 or
more roads meet each others.

 

Figure 1: 11 houses linked without
intersection

 

Figure 2: 11 houses linked with 3
intersections

The case without intersection is easier than with intersections. Unfortunately it is less
realistic and doesn’t give as good results as with intersections.

On the other hand, the case with intersection is more realistic and gives usually better
results but is really difficult to prove.
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Part I

First approach: without intersection

1 Introduction

Let’s first see this problem as a graph problem.

Definition 1.1. a graph is a set of vertices (also called nodes) that are linked (or not)
by edges

Figure 3: a graph with 8 nodes and 10 edges

Each house will be represented by a nod and each road will be represented by a edge.
It also means that every road starts from a house and goes to another. There is no road
coming from a house and going to 2 other houses (so no intersections).

A lot of results about our problem were found . An algorithm to create the smallest
route was found and was proven. A program in Python was finally made to find the
smallest route on given points. This article will first explain our algorithm, then prove it
and finally explain the code developed.

2 Algorithm

2.1 Presentation of the Algorithm

To find the smallest path for given houses one needs to:

1. take a random house

 

 

  
2. link it to the nearest house
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3. take the nearest house to one of the houses that is already linked and link it to it

 

4. repeat the previous step until every house is linked to each other

 2.2 Proof of the Algorithm

Before proving the algorithm presented, some vocabulary must be added

Definition 2.1. a connected graph is a graph where it is possible to go from the vertex
X to the vertex Y for all X, Y

Figure 4: connected graph

Figure 5: disconnected graph
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Figure 6: tree

Definition 2.2. a Tree is an undirected, acyclic, connected graph. It means that it is a
connected graph where there is no cycle and where the segment goes in the 2 directions
(There are no one-way ”roads”)

Lemma 2.3. The smallest path possible is a tree

Proof. The smallest path must be connected, it is in its definition. It must also be acyclic,
otherwise one could erase an edge, it will still be connected but strictly smaller. The edges
must also be undirected because otherwise there must be at least a cycle to be able to
go from each vertices to another, which produce a strictly bigger graph than it would if
undirected

One can now prove that our algorithm produce the smallest tree possible. It will be
proven by contradiction. It means that it will be assumed that the algorithm does not
produce the smallest path then one will find a contradiction. It will imply that the path
produced by the algorithm is (one of) the smallest path.

Proof. :
First, there are m houses. There may exist more than one smallest path (there are for

example 3 smallest paths in the case the houses form a equilateral triangle). The smallest
paths possible will be called A1, A2, ..., An. As proven in the lemma above, all these Ai
are trees.

The different sub-trees produced by the algorithm at each step will also be called
T0, T1, T2, .., Tm (T0 has no edge, T1 has 1 edge, T2 is T1 with one more edge (so 2
edges),...,Tm is a complete tree). To go from Ti to Ti+1, one must add the smallest
road that link a not-connected house to T1. It can be sees that T0 is a sub-tree of every
Ai as it is only composed of one house and all the houses are in all the Ai as they are
connected graphs.

By the contradiction hypotheses, the algorithm does not lead to a smallest path.
However, as T0 is a sub-tree of every Ai. It means that there is a Tk that is a sub-tree of
(without loss of generalities) A1 and a Tk+1 that is not the sub-tree of any Ai for every i.
(Tk ∈ A1, Tk+1 /∈ Ai,∀i)

S is defined as the set of all the nodes that are in Tk
Let denotes by e the edge that is added to Tk to form Tk+1. In other words, Tk+1 =

Tk ∪ {e}

The 2 vertices that e links together are denoted by v1 and v2. v1 ∈ S, v2 /∈ S.
As A1 is connected, there exists a path between v1 and v2 in A1. We call the nodes

that are on this path (in order): v1 = w0, w1, w2, ...wt−1, wt = v2.
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Once again, as v1 ∈ S, v2 /∈ S, there will be at some point a wl ∈ S and wl+1 /∈ S .
The edge that goes from wl to wl+1 is called f .

A1 ∪ {e} \ {f}
is also a smallest path.

Indeed, it can link the same houses than A1. From w0 to wl, it follows the same path
than in A1 and from wl+1 to wt it follows the opposite direction than in A1: going in the
order w0, wt, wt−1, ..., wl+1. As a consequence this graph is a tree.

Furthermore, by the definition of our algorithm, |e| ≤ |f | as e and f are linked
to S and the algorithm take the nearest house, taking the smallest edge. As a result,
A1 ≥ A1 ∪ {e} \ {f}.

Thus, Tk+1 must be a sub-graph of an Ai. This gives a contradiction. So the tree
produced by the algorithm presented is optimal.

 
Figure 7: Schema of the proof: In green the vertices in S, in this case, the only difference
between A1 and Tm are the sides f and e. Also, T3 is a sub-graph of A1 but T4 is not a
sub-tree of any Ai

3 Computer Program

The Belgian team created a program that put houses (points) at random integer coor-
dinates from 0 to 100 (to simplify the computation). Then it calculates all the different
distances. After it follows the algorithm presented and gives the total length of the small-
est path. Finally it shows the houses and the routes on a graph.

It also can be easily changed into a program that takes as input a number of houses
and their coordinates if one needs a specific disposition

On the next page, the figures 8 and 9 show the result of the program and a schema of
the code.
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  Figure 8: schema of our code

 

 

 Figure 9: Example with 10,50,100,200 houses

4 To go further

The Belgian team also wondered what would happen if it wasn’t possible to link some
roads directly together because there was for example a mountain or a lake between them.

In fact, the algorithm that is presented in 2.1 still produce the optimal tree. The only
thing that changes is that one only need to check the roads available when choosing the
smallest road.

The reader can convince himself that the proof shown above also work with blocked
roads.

4.1 Program with blocked roads

A program including blocked roads was also made. It is the same code than the one
shown above, with a part that chose randomly some blocked roads and check if the road
chosen isn’t blocked. The figure 4.1 shows some pictures of the program.

 

 

  
Figure 10: Example with 10/5,20/20,50/25,100/50 houses/blocked roads
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Part II

Second Approach: with Intersections
As in the first part, each house is associated to a point. However, this time intersections
are allowed.

5 Limitation of the intersection

Lemma 5.1. In order to obtain the shortest route, each intersection point should be
connected to at least 3 roads.

Proof. If an intersection point P were connected to only two roads, then one could remove
the intersection point and connect directly the two houses. Using the triangle’s inequality
1, it is obvious that the second route is shorter.

5.1 Maximal Number of Intersections

To optimize the route, one have to limit the number of intersection points. It will be done
using some elementary elements of graph theory.

Lemma 5.2. Let n be the number of houses, t the number of intersection points and r
the number of roads. Then:

r = t+ n− 1

Proof. As mentioned in Lemma 2.3, the shortest route is a tree. The number of segments
in a tree is equal to the number of nodes minus 1. In this case the number of nodes is
t+ n so the conclusion follows.

Lemma 5.3.

r ≥ 3t+ n

2

Where n is the number of houses, t the number of intersections and r the number of roads

Proof. Let’s count the number of roads: each house is connected to at least one road and
each intersection to at least three roads (Lemma 5.1). Summing up, one obtain twice the
number of roads, because each road is counted twice: once for each end. Dividing by two,
the result is obtained.

Theorem 5.4.
t ≤ n− 2

Proof. Combining Lemma 5.2 and Lemma 5.3, one has t + n − 1 ≥ 3t+n
2

. The above
inequality can be obtained with basic algebra.

1In any triangle ABC, |AB| ≤ |AC|+ |BC|
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6 With 3 houses

6.1 3 points forming a triangle with all angles less than or equal
to 120◦

Let’s note the points with A,B,C. In this case, the shortest route passes through the
Torricelli point which we denote T .

6.1.1 Construction of the Torricelli Point
 

 

 

1. One constructs an equilateral triangle on each side of the triangle.

 

2. One constructs the circumscribed circle of each equilateral triangle.

 

3. The intersection of the circles is the Torricelli point.
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Lemma 6.1. The circumcircle of the equilateral triangles have a common point.

Proof. Let T be the intersection point of circles circumscribed of ∆ABC ′ and ∆ACB′.
Then:
Quadrilateral ATBC ′ is cyclic (it can be inscribed in a circle)

⇒ |ÂTB| = 180◦ − |ÂC ′B| = 180◦ − 60◦ = 120◦.
Quadrilateral ATCB′ is cyclic
⇒ |ÂTC| = 180◦ − |ÂB′C| = 180◦ − 60◦ = 120◦.

|B̂TC| = 360◦ − |ÂTB| − |ÂTC| = 360◦ − 120◦ − 120◦ = 120◦

⇒ |B̂TC|+ |B̂A′C| = 180◦

⇒ quadrilateral BTCA′ is cyclic
⇒ T is on the circumscribed circle of the ∆BCA′.
⇒ T is the intersection of the circumscribed circles of the equilateral triangles.

Lemma 6.2. |ÂTB| = |ÂTC| = |B̂TC| = 120◦

It can be easily proven using the result and proof of Lemma 6.1

Lemma 6.3. AA′ ∩BB′ ∩ CC ′ = {T}

Proof. BTCA′ is cyclic ⇒ |Â′TC| = |Â′BC| = 60◦

|Â′TA| = |Â′TC|+ |ĈTA| = 60◦ + 120◦ = 180◦ ⇒ T ∈ AA′.
Analogous T ∈ BB′ and T ∈ CC ′.

Lemma 6.4.
|AT |+ |BT |+ |CT | = |AA′| = |BB′| = |CC ′|

 

Proof. Applying the Ptolemy’s theorem2 in inscribed quadrilateral BTCA′, one obtains:

|BC| · |TA′| = |BT | · |A′C|+ |A′B| · |CT | (1)

∆BCA′ is equilateral :
|BC| = |A′C| = |A′B| (2)

From (1) and (2) one obtains: |TA′| = |BT |+ |CT |.
Using Lemma 6.3, T ∈ AA′ ⇒ |AA′| = |AT |+ |TA′| = |AT |+ |BT |+ |CT |.
Analogous |BB′| = |AT |+ |BT |+ |CT | and |CC ′| = |AT |+ |BT |+ |CT |.

2the quadrilateral ABCD is cyclic ⇔ |AC| · |BD| = |AB| · |CD|+ |AD| · |BC|
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6.1.2 Proof of the shortest road

Let’s first introduce some notations: |BC| = a, |AC| = b, |AB| = c, |AT | = d, |BT | =
e, |AC| = f .

It will first be proven that:

|TA|+ |TB|+ |TC| < |AC|+ |AB|

Proof. From lemma 6.2, |ÂTB| = |ÂTC| = |B̂TC| = 120◦ ⇒ cos(T ) = −1/2.
Using the law of cosines in ∆BTC one obtains:

|BC|2 = |BT |2 + |CT |2–2 · |BT | · |CT | · cos(T )

⇔ b2 = e2 + f 2 + e · f

Using the law of cosines in ∆ATB one obtains:

|AB|2 = |AT |2 + |BT |2–2 · |AT | · |BT | · cos(T )

⇔ c2 = d2 + e2 + d · e

So one has:

(b+c)2 = b2+c2+2·b·c = e2+f 2+e·f+d2+e2+d·e+2
√

(e2 + f 2 + e · f)(d2 + e2 + d · e)

.
It need to be proven that:

b+ c > d+ e+ f

⇔ (b+ c)2 > (d+ e+ f)2

as b, c, d, e, f are all positives as they are lengths.

⇔ e2 + f 2 + e · f + d2 + e2 + d · e+ 2
√

(e2 + f 2 + e · f)(d2 + e2 + d · e) > (d+ e+ f)2

⇔ e2+f 2+e·f+d2+e2+d·e+2
√

(e2 + f 2 + e · f)(d2 + e2 + d · e) > d2+e2+f 2+2·d·e+2·e·f+2·d·f

⇔ 2
√

(e2 + f 2 + e · f)(d2 + e2 + d · e) > d · e+ e · f + 2 · d · f

⇔ 4(e2+f 2+e·f)(d2+e2+d·e) > d2 ·e2+e2 ·f 2+4·d2 ·f 2+2·d·e2 ·f+4·d·e·f 2+4·d2 ·e·f

⇔ 4 ·e2 ·d2+4 ·e4+4 ·e3 ·d+4 ·f 2 ·d2+4 ·f 2 ·e2+4 ·f 2 ·d ·e+4 ·e ·f ·d2+4 ·e3 ·f+4 ·d ·e2 ·f

>

d2 · e2 + e2 · f 2 + 4 · d2 · f 2 + 2 · d · e2 · f + 4 · d · e · f 2 + 4 · d2 · e · f

⇔ 3 · e2 · d2 + 4 · e4 + 4 · e3 · d+ 3 · f 2 · e2 + 4 · e3 · f + 2 · d · e2 · f > 0

Which is always true

⇒ b+ c > d+ e+ f ⇔ |TA|+ |TB|+ |TC| < |AC|+ |AB|

Analogous |TA| + |TB| + |TC| < |BC| + |AC| and |TA| + |TB| + |TC| < |BC| +
|AB|.
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Now it will be proven that it is the only point where it is obtain the minimal length
of the road.

Proof. LetM be a point inside ∆ABC. Applying the Ptolemy’s inequality in the quadrant
MBA′C, one obtains : |MA′| · |BC| ≤ |MB| · |A′C|+ |MC| · |A′B|.

∆BCA′ is equilateral ⇒ |BC| = |A′C| = |A′B|.
Thus the following equation can be obtained:

|MA′| ≤ |MB|+ |MC| (3)

Using the triangle inequality in ∆AMA′, one obtains:

|AA|′ ≤ |MA|+ |MA′| (4)

From (3) and (4) one obtains :

|AA′| ≤ |MA|+ |MB|+ |MC|

Moreover, one of the properties Torricelli point is : |AA′| = |TA|+ |TB|+ |TC| (Lemma
6.4). It implies that : |TA|+ |TB|+ |TC| ≤ |MA|+ |MB|+ |MC|. The equality occurs
only if M = T .

6.2 3 points forming a triangle with an angle greater than 120◦

Let’s denote the points with A,B,C and without limiting generality it is assumed that
|ÂBC| > 120◦.

In this case, the shortest way is obtained without intersections and is represented by
|AB|+ |BC| ⇒ |AT |+ |BT |+ |CT | > |AB|+ |BC|.

 

Proof.
|ÂBT |+ |T̂BC| = 360◦ − |ÂBC|

But |ÂBC| > 120◦ ⇒ −|ÂBC| < −120◦ Then

|ÂBT |+ |T̂BC| < 240◦ (5)

There are 2 cases:
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a) |ÂBT | ≥ 90◦ and |ĈBT | ≥ 90◦

(but not |ÂBT | = 90◦ and |ĈBT | = 90◦)
Using the law of cosines in ∆ABT , one obtains:
|AT |2 = |BT |2 + |AB|2–2 · |BT | · |AB| · cos |ÂBT |
But

|ÂBT | ≥ 90◦ ⇒ cos |ÂBT | ≤ 0

⇒ –2 · |BT | · |AB| · cos|ÂBT | ≥ 0

⇒ |AT |2 ≥ |BT |2 + |AB|2

⇒ |AT | > |AB| (6)

Using the law of cosines in ∆CBT one obtains:
|CT |2 = |BT |2 + |BC|2–2 · |BT | · |BC| · cos |ĈBT |
But

|ĈBT | ≥ 90◦

⇒ cos |ĈBT | ≤ 0

⇒ –2 · |BT | · |BC| · cos |ĈBT | ≥ 0

⇒ |CT |2 ≥ |BT |2 + |BC|2

|CT | > |BC| (7)

From (6) and (7) one can obtain:

|AT |+ |CT | > |AB|+ |BC|

⇒ |AT |+ |BT |+ |CT | > |AB|+ |BC|

b) |ÂBT | < 90◦ or |ĈBT | < 90◦

Using (5) one obtains that |ĈBT | > 90◦ or |ÂBT | > 90◦

If |ĈBT | < 90◦ the triangle inequality can be used for ∆BCT and it implies that:

|BT |+ |CT | > |BC| (8)

From (6) and (8) one obtains:

|AT |+ |BT |+ |CT | > |AB|+ |BC|

.
If |ÂBT | < 90◦ one can use the triangle inequality for ∆BAT and obtain:

|BT |+ |AT | > |AB| (9)

From (7) and (9) we obtain:

|AT |+ |BT |+ |CT | > |AB|+ |BC|

.
Analogous it can be demonstrated that |AM |+ |BM |+ |CM | > |AB|+ |BC|, for any

M ∈ ext ∆ABC. Analogous one demonstrates |AN |+ |BN |+ |CN | > |AB|+ |BC|, for
any N ∈ int ∆ABC.
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7 For more than 3 houses

Analyzing the case with 3 houses, one obtains some rules that the shortest route has to
follow.

Definition 7.1. A Torricelli-like point is an intersection with 3 angles equal to 120◦

around it.

Properties:

1. Every two roads that meet should form an angle grater or equal than 120◦

2. No point should be connected to more than three roads;

3. Any point connected with three roads has to be a Torricelli-like point.

4. All intersection points has to be a Torricelli-like point.

Proof. If two roads connecting in three points, A,B,C form an angle smaller than 120
degrees at their common point node B, then we could construct another intersection point
O such that |OA|+ |OB|+ |OC| is smaller than |AB|+ |BC|.

As the full circle is only 360 degrees, if a node N were to be connected to 4 or more
roads, there would be at least 2 roads connecting N that would form an angle smaller
than 120 degrees. For the same reason, if a node is connected by three roads, no two
roads connecting it can form an angle larger than 120 degrees : if that were the case, the
remaining road would from an angle smaller than 120 degrees with at least one of the two
roads.

An intersection point is connected to at least three roads by Lemma 5.1. We just
proved an intersection point could not be connected to more than three roads therefore,
an intersection point is always connected to exactly 3 roads.

7.1 4 Points Forming a Rectangle

Being a particular case, the rectangles offer more than one way to prove our algorithm.
The demonstration of the algorithm for rectangles using only geometrical methods will
be presented in this part. Let’s note the points with A,B,C and D. To simplify the
calculations, the following notations will also be used: |AB| = L, |BC| = l, |GE| = x

The points E and F will also be introduced such that:
E and F are points in the interior of the rectangle ABCD and |ÂED| = 120◦ = |B̂FC|
|AE| = |DE| and |BF | = |FC|
With those properties, it can be implied that :

∆AED is isosceles ⇒ ∆AGE ≡ ∆GED ⇒ |ÂEG| = |D̂EG| = |ÂED|
2

= 120◦

2
= 60◦.

|ÂEF | = 180◦ − |ÂEG| = 180◦ − 60◦ = 120◦

|D̂EF | = 180◦ − |D̂EG| = 180◦ − 60◦ = 120◦

Thus one obtains that |ÂED| = |ÂEF | = |D̂EF | = 120◦ ⇒ E is the Torricelli point
for ∆ADF .

Similarly, F is the Torricelli point of ∆ADF
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It will first be proven that: |AE|+ |DE|+ |EF |+ |BF |+ |CF | < L+ 2 · l (one compares
with the shortest route without intersections)

Proof. |ÂED| = 120◦

|AE| = |DE| ⇒ ∆ADE is isosceles

⇒ |D̂AE| = |ÂDE| = 30◦

In ∆AGE : |ĜAE| = 30◦, |ĜAE| = 90◦ ⇒ |AE| = 2 · |GE| = 2 · x

⇒ |AG| = |GE|
√

3 = x
√

3 (10)

But G is the midpoint of [AB]

⇒ |AG| = |GD| = |AD|
2

=
l

2
(11)

From 10 and 11 one obtains:

x
√

3 =
l

2

⇒ x =
l

2
√

3

|EF | = L− 2 · |GE| = L− 2 · x.
It must be proven that:

L+ 2 · l > |AE|+ |DE|+ |EF |+ |BF |+ |CF |

⇔ L+ 2 · l > 4 · 2 · x+ L− 2 · x

⇔ L+ 2 · l > L+ 3 · 2 · x

⇔ 2 · l > 3 · 2 · x

⇔ 2 · l > 3 · 2 · l

2
√

3

⇔ 2 · l >
√

3 · l

⇔ 2 >
√

3

Which is always true

It will be proven that it is shorter than the shortest route with a single intersection

 

 

 

 

 

 

L 

 
l 

x 
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Proof. For starters, let’s prove that the shortest route with a single intersection passes
through the intersection of the diagonals.

Let P be a point in the interior of the rectangle ABCD and R be the intersection of
the diagonals.

From the triangle inequality in ∆ACP one obtains that |AC| < |AP |+ |PC|.
From the triangle inequality in ∆BDP one obtains that |BD| < |DP |+ |PB|.
From these two inequalities one gets that:
|AR|+ |BR|+ |CR|+ |DR| = |AC|+ |BD| < |AP |+ |BC|+ |CP |+ |DP |
⇒ The shortest route with a single intersection passes through the intersection of

diagonals.
Now let’s compare the shortest road with a single intersection with the shortest road

with 2 intersections.

|AR|+ |BR|+ |CR|+ |DR| > |AE|+ |DE|+ |EF |+ |BF |+ |CF |

⇔ 2 ·
√
L2 + l2 > 4 · 2 · l

2
√

3
+ L− 2 · l

2
√

3
+
√

3 · L

⇔ 12 · (L2 + l2) > 9 · l2 + 2 · 3 ·
√

3 · l · L+ 3 · L2

⇔ (3 · L)2 − 2 · 3 ·
√

3 · l · L+ (
√

3 · l)2 > 0

⇔ (3 · L−
√

3 · l)2 > 0

Which is always true

It will now be proven that it is the smallest route with 2 intersections

 

 

 

Proof. Let M and N be 2 points in the interior of rectangle ABCD. Let T1 and T2 be
the Torricelli points for respectively ∆ADN and ∆BCM .
T1 - Torricelli point for ∆ADN :

|AT1|+ |DT1|+ |NT1| ≤ |AM |+ |DM |+ |NM | (12)

T2 - Torricelli point for ∆BCM :

|BT2|+ |CT2|+ |MT2| ≤ |BN |+ |CN |+ |MN | (13)

From (12) and (13) one obtains that M is the Torricelli point for ∆ADN , respectively N
is the Torricelli point for ∆BCM .

Notations: |D̂AM | = a, |N̂BC| = b, |B̂CN | = c, |ÂDM | = d.

∆ADM : a+ d+ 120◦ = 180◦ ⇒ d = 60◦ − a
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b = 90◦ − (360◦ − 120◦ − 120◦ − (90◦ − a)) = 60◦ − a
Then b = d.

∆ADM : a+ d+ 120◦ = 180◦ ⇒ a = 60◦ − d
c = 90◦ − (360◦ − 120◦ − 120◦ − (90◦ − d)) = 60◦ − d

Then a = c.
∆ADM and ∆CBN : a = c, d = b, |AD| = |BC|(= l)⇒ ∆ADM ≡ ∆CBN

⇒ |DM | = |BN | and |AM | = |CN |

Let R ∈ [AB] be a point so that NR ⊥ AB ⇒ |N̂RB| = 90◦

|N̂BR| = 90◦ − b = 90◦ − d

Let S ∈ [CD] be a point so that MS ⊥ CD ⇒ |M̂SD| = 90◦

|M̂DS| = 90◦ − d

∆SDM and ∆RBN : |N̂RB| = |M̂SD|(= 90◦), |N̂BR| = |M̂DS|(= 90◦ − d),

|DM | = |BN | ⇒ ∆SDM ≡ ∆RBN

⇒ |SM | = |RN |
Let P ∈ [AB] be a point so that MP ⊥ AB and V ∈ [CD] be a point so that

NV ⊥ CD
Analogous one demonstrates that |MP | = |NV |.

Also one obtains that |M̂SD| = |M̂PA| = |P̂AD| = |ŜDA| = 90◦ ⇒ APSD is a
rectangle

|DS| = |AP | (14)

Similarly one obtains that |V C| = |RB|.
Let assume that a > d ⇒ |MD| > |MA|, it will be shown by contradiction that it is

not possible.
It can be obtained from Pythagoras’ theorem in ∆MDS and ∆MPA that |MS| =√
|MD|2 − |DS|2 and |MP | =

√
|MA|2 − |AP |2 =⇒ |MS| > |MP |

=⇒ |NR| > |NV | (15)

 

 

 

In the figure there is:
α = 180◦ − (90◦ − a) = 90◦ + a
β = 120◦
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Because a + d = 60◦ and a > d ⇒ a > 30◦ ⇒ α > 90◦ + 30◦ = β ⇒ The line
MN is oblique so that the distance from N to AB is less than the distance from M of
|AB| ⇒ |NR| < |MP |

=⇒ |NR| < |NV | (16)

From (15) and (16) there is a contradiction.⇒ The assumption made is false. ⇒ a ≤ d.
Analogous one obtains a contradiction for a < d ⇒ a = d = 60◦

2
= 30◦ ⇒ ∆MDA is

isosceles ⇒ |AM | = |DM |.
a = d = 30◦ ⇒ b = c = 30◦ ⇒ ∆NBC is isosceles ⇒ |BN | = |CN | . Because M

and N have all the properties of the points E, respectively F it implies that M = E and
N = F .

7.2 Generalization with 4 Points

Based on Theorem 5.4 the Romanian team observed that an general optimization of
the route consists in having 2 intersection points. However, these two points can vary
depending on the quadrilateral’s sides.

For example, one can create an optimization of the route by taking the quadrilateral
diagonals

 

Then one takes the Torricelli point of one of the created triangles (2) quadrilateral
vertices and the center of it)

 

Then do the same with the triangle formed by the other two vertices and the center.

 

And in the end one unites the two Torricelli points and we have an optimum route for
this quadrilateral. (colored in red)
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But for other quadrilaterals a better optimization is the one that uses the same algo-
rithm but instead of the intersection of the diagonals, uses their center of gravity of the
quadrilateral.

 

7.3 5 points forming a regular pentagon

We look for an optimum route with the maximum intersection points : three. From
Lemma 5.1 (In order to obtain the shortest route, each intersection point should be
connected to at least 3 roads.) and Lemma 5.2 (Let n be the number of houses, t the
number of intersection points and r the number of roads. Then: r = t + n − 1 in this
case r = 7;), it results that no two cities/points can be connected directly and that no
intersection point can be connected to three cities as the angle between 2 cities is smaller
than 120◦. So there must be two intersections which connect two cities each. They are
connected between them and with the last city by a third intersection, as in the figure
below.

 

We denote by R the length between the center of the pentagon and any of its vertices.
This road is 4.57R long, the road without intersection is 4.7R long

7.4 6 Points Forming a Regular Hexagon

Intuitive we connected the 6 points in 3 pairs of two adjacent cities. Then we connect
those 3 resulted intersections into the center of the hexagon. This way we obtain the
maximum number of intersection points: four.
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Again, let’s denote by R the length between the center of the pentagon and any of its
vertices. The road length 3

√
3R = 5.196R. However, this is longer that the road with no

intersection points which is 5R

7.5 Generalization for 3 · 2α houses that form a regular polygon

As mentioned above, it is difficult to control more than 3 points, but in this certain case,
there is an algorithm that works for any value of α.

Using the properties i, ii, iii, iv and Theorem 5.4 one gets that the shortest route with
intersections would be constructed as follows:

one make a partition of the houses in pairs of neighbouring houses. By neighbouring
houses it is understood 2 houses Ai and Ai+1 that lie at the end of the same side of the
regular polygon. Each pair of houses Ai, Ai+1 is linked to an intersection point S such as

|SAi| = |SAi+1| and | ̂AiSAi+1| = 120◦. The intersection points obtained form a regular
polygon with 3 · 2α−1 vertices, which is treated as previous.

By induction, this allows to compute the length of the route.
Let R be the radius of the circumscribed circle of the polygon. Then, the distance from

the center of the circle to the polygon’s vertices is equal to R ·cos(180
◦

n
)−R · sin(

180◦
n

)

tan(60◦)
. The

distance between one intersection point and one house that is linked to it is R · sin(
180◦
n

)

sin(60◦)
.

Therefore, if lα is the length of the road with n = 3 · 2α houses, then:

lα+1 = R
sin(180

◦

n
)

sin(60◦)
+

(
R · cos

(
180◦

n

)
−R

sin(180
◦

n
)

tan(60◦)

)
· lα

Making some calculus, it can be discovered discover that for α > 0, the road without
intersection is shorter than the one with intersections.

In the table bellow it is shown the length of the road with intersections for various
values of α (R = 1).

Number of Vertices Length of the Road with Intersections
3 3
6 5.19615
12 7.82894
24 10.7892
48 13.9837
96 17.339

7.6 Concave quadrilaterals

For concave figures, it is even harder to develop an algorithm that works for a wide range
of cases. In this part an optimization for the case of four houses that form a concave
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quadrilaterals will be presented, as it is shorter than the one without intersections. Firstly,
one can split the quadrilateral in 2 parts: one made from the outside layer of houses, which
forms a triangle, and one from the inside point. one builds the Torricelli’s point for the
triangle, as well as the roads that connect it with the 3 houses. Afterwards, from the left
house, one builds a perpendicular road to the nearest already built road, as seen in the
figure bellow. However, for a slightly different figure, the smallest path could be really
different.
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Part III

Conclusions
The case without intersection is easier to prove and give quite good results. However, it
usually doesn’t give the best result.

In the other hand, the best results are usually found in the case with intersection and
are nearer to the reality . However it is really difficult to find an algorithm for a general
case. Indeed, this problem is a NP(-hard) problem. It means that there is no algorithm
resolving this problem in polynomial time (in time that is given by a polynomial depend-
ing of the number of houses). It implies that for large number of houses, there is no
algorithm found nowadays. Finding an algorithm for this type of problem (or proving
there is not) is a problem of the millennial from the Clay institute.

This research subject enable us to discover the graph theory. It also allowed us to
discover the work of the researchers. Our school twinning was an opportunity to discover
each other’s culture and also the way Mathematics is practised. It was an great way to
enhance international cooperation

8 Contacts

If you have questions, remarks or if you would like to have the program we made, please
send a mail at simonmartin462@gmail.com, we will be pleased to answer you.
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